
Abstract

From an asset portfolio management perspective, analyses of the correlations between 
returns are of great importance. This article investigates the correlations between the 
rates of return of Tokyo Electric Power Company stock and the Japanese Nikkei index 
over the lengthy period of 1985 to 2016. Using Markov-switching models, we seek to 
determine the effects of the Fukushima earthquake disaster compared with those of other 
shocks on the Japanese financial market. Although the Fukushima catastrophe resulted 
in more volatile stock prices, it had not changed the correlation structure among asset 
returns. In addition, both low- and high- volatility regimes, the Nikkei causes Tokyo 
Electric Power Company, but Tokyo Electric Power Company does not cause the Nikkei.
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I. Introduction

In environments of uncertainty and market volatility, asset managers must diversify 
their portfolios, and Japan is no exception. Since the early 1980s, several major shocks 
have disrupted the Japanese stock market, as reflected in the dynamics of the Nikkei 225 
index. The country experienced its first serious financial crisis featuring the collapse of 
the stock and real estate markets in the late 1980s, followed by the Asian crisis of 1997, 
the worldwide burst of the Internet bubble in 2000, and the subprime crisis that occurred 
in 2007. Yet Japan faced an additional shock—the Fukushima earthquake disaster. 
Although asset markets experience speculative bubble development after crises (Shiller 
2005), the Fukushima shock was different; the earthquake and subsequent tsunami 
resulted in a nuclear catastrophe at least as serious as that of Chernobyl. It had a direct 
impact not only on Tokyo Electric Power Company (TEPCO) but also on the entire 
electricity sector, and ultimately the entire economy. Jaussaud et al. (2015) highlight the 
strong increase in the volatility of stocks in the Japanese electricity sector, reflecting the 
uncertainty resulted from the shutdown of the Fukushima nuclear reactors.

The current study focuses on the relation between the price of the TEPCO stock and 
the Nikkei index. We adopt two perspectives for this investigation. First, we discuss 
the correlations among asset returns. Second, we take a long-term view to investigate 
whether the Fukushima disaster reveals specific characteristics of the Japanese market 
that had not been expressed by previous financial shocks.

 Like any other company, its stock may be affected by business or economic events, 
but it is possible that specific environmental and nuclear safety issues (Fukushima 
catastrophe) have had specific impacts on the stock volatility and returns of TEPCO, 
a major electric and nuclear power utility. We investigate the correlations between the 
Japanese stock market index and the stock price of TEPCO using a Markov Regime 
Switching (MRS) technique. To our knowledge, this study is the first comprehensive 
econometric analysis of the market valuation of this basic network firm. 

Abundant literature shows that the regime switching Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) model outperforms other GARCH models, 
such as Günay’s (2015) oil return study. Marcucci (2005) concludes that the MRS–
GARCH model exhibits better fitting results than other GARCH models, particularly in 
the short run, whereas most GARCH models are more adapted to long-run modeling. 
Boudt et al. (2012) find strong evidence of time variation within the regime volatility of 
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US deposit banks’ stock returns for 1994~2011.
By studying the impacts of several earthquakes in Japan, Hatase et al. (2013) show 

that the Great Kanto earthquake in 1923 had more impact on the volatility of the yen 
than the Great Hanshin-Awaji earthquake in 1995 or the Great East Japan earthquake in 
2011. Moreover, in a study of 2010~2012, Jaussaud et al. (2015) show that following the 
Fukushima earthquake, regime switching occurred in the form of shifting from a low- to 
a high-volatility regime for at least a year after the catastrophe. 

Although studies of regime switching and volatilities are plentiful, we focus 
on another important pattern, the existence of nonlinear relations among different 
stock returns as well as between stock returns and volatilities. We can analyze these 
nonlinearities with two categories of regime-shift models. First, we consider a regime-
switching dynamic correlation model (Pelletier 2006). Second, we estimate a Markov-
Switching Vector Autoregression (MS-VAR) (Krolzig 1997) model to clarify the relations 
among stock price returns. Third, we analyze the dynamic interaction between the 
TEPCO price and the price of the Nikkei 225 index. Following Ehrmann et al. (2003), 
we retain impulse response functions computed from an MS-VAR model in which the 
regimes do not switch beyond the shock horizon. As Hamilton (1989) notes, the state 
variable that controls the regime is exogenous. In the case of TEPCO, exogenous factors 
include the general economic situation, factors that drive the electric utility industry, 
or certain regulatory or environmental changes such as earthquakes. With regard to the 
Nikkei index, the exogenous factors entail Japanese interest rates, exchange rates, and 
political and environmental issues. 

The remainder of this paper is organized as follows: Section II presents the data 
and methodology, Section III analyzes the stationarity of series, Section IV details the 
correlation structure between TEPCO and the Nikkei index, Section V presents the MS-
VAR model, and Section VI concludes.



Vol.33 No.1, March 2018, 979~1010 Serge Rey and Sophie Nivoix 

http://dx.doi.org/10.11130/jei.2018.33.1.979
jei

982

II. Data 

This study investigates the behaviors of daily prices and returns of TEPCO and the 
Nikkei 225 over a 30-year period from June 19, 1985 to March 29, 2016. The financial 
and stock market data consist of 8,016 observations drawn from the International Factset 
database. As Figure 1 shows, the long-term Nikkei 225 index and the TEPCO stock price 
show high volatility between 1985 and 2016.

Some shocks such as those from the 1987 market crash, the Gulf War, the burst of 
Japan’s real estate bubble at the beginning of the 1990s, the burst of the Internet bubble 
in 2000 and the subprime crisis in 2008 have had an impact on the entire Japanese 
financial market. The Nikkei never climbed back to its 1990 high (more than twice 
its 2016 level), and TEPCO exhibited the same pattern until the Fukushima disaster. 
Nevertheless, after this catastrophe, the behaviors differ. After its fall, TEPCO’s stock 
price represented less than 5% of its highest value, in 1987, while the Japanese market 
seemed to absorb the shock more easily.

Figure 1. TEPCO and Nikkei 225 index
 

 

(Source) International Factset database
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We complete our analysis with descriptive statistics of daily stock returns. At the 
industry level, daily returns Rt are defined by  , where 
P represents the stock price or market index. As Figure 2 shows, the largest daily returns 
of the Nikkei 225 occurred during the 2008 subprime crisis; the second-largest variations 
occurred during the Gulf War in 1990. For TEPCO, the largest volatility appeared during 
the weeks after the Fukushima earthquake and continued for a few years. The only other 
period in which the company experienced such dramatic price variations was during the 
months following the 1987 market crash.

Figure 2. Daily returns on TEPCO and the Nikkei 225

(Source) International Factset database, calculations of authors

TEPCO

Nikkei 225
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Table 1 reports the descriptive statistics for the natural logarithms of TEPCO and the 
Nikkei 225 (columns 1 and 3) as well as for the TEPCO and Nikkei returns (columns 2 
and 4). It reveals the partial differences in the main patterns for TEPCO and the Nikkei 
index. Whereas the median return is 0 for both, the mean value is −.0154 for TEPCO 
and .0036 for the Nikkei. In the long run, the standard deviation of TEPCO stock is 
far higher than that of the Nikkei. The difference is more obvious when we account 
for kurtosis, which indicates that TEPCO (35.49) has experienced many larger price 
variations than the Nikkei during the past three decades. Moreover, return distributions 
are not symmetric; there are positively skewed returns for TEPCO and negatively for the 
Nikkei. As a consequence, both return distributions as confirmed by the high values of 
the Jarque–Bera statistic, do not fit a Gaussian distribution. The normality hypothesis is 
rejected at the 1% significance level. This result is fairly common in international market 
returns (Cont 2001), but in the Japanese context, it is interesting to look more deeply at 
the volatility process.

Table 1. Descriptive statistics 
(1985~2016) 

TEPCO Nikkei 225
(1) (2) (3) (4)

Ln P 100ΔLn P Ln P 100ΔLn P
Mean 7.69085 −0.0154 9.6588 0.0036
Median 7.8761 0.0000 9.6955 0.0000
Maximum 9.1133 30.61160 10.5691 13.2346
Minimum 4.7957 −32.3273 8.8614 −16.1354
Standard Deviation 0.8642 2.3873 0.3626 1.4458
Skewness −1.5357 0.3443 0.1201 −0.2875
Kurtosis 4.9376 35.4962 2.4529 11.0741
Jarque–Bera 4404.93*** 352864.5*** 119.2268*** 21884.74***
Q(1) 8010.7*** 45.601*** 8005.9*** 6.8197***
Q(4) 31990*** 90.686*** 31958*** 20.703***
ARCH(1) 1109.964*** 1018.342*** 279.4912*** 271.1421***
ARCH(4) 1250.079*** 1191.541*** 999.8653*** 999.3685***
Observations 8016 8015 8016 8015

(Note) *** Significance at the 1% level, thereby rejecting the null hypotheses of normally distributed errors, of no 
serial correlation, and of no ARCH effects.
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Table 1 also provides the Ljung-Box first (Q(1)) and fourth (Q(4)) autocorrelation 
tests and the first (ARCH(1)) and fourth (ARCH(4)) Language Multiplier (LM) tests 
for autoregressive conditional heteroskedasticity.1 For the levels and differences of both 
series, we find evidence of first and fourth autocorrelation. As Jaussaud et al. (2015) 
point out with regard to TEPCO, such autocorrelations can signal momentum effects. In 
the same way, ARCH-LM tests confirm the presence of ARCH effects in the time series 
residuals (rejecting the null hypothesis of no ARCH effects).

We complete the data description by examining the linearity of stock prices. The 
Likelihood Ratio (LR) test is based on the LR statistic (Garcia and Perron 1996, Krolzig 
1997):

                                                                                  (1)
   

where  and  denote the log-likelihoods of the MS-AR and 
Autoregressive (AR) models. The null hypothesis is that there is no regime shift. The 
results in Table 2 confirm the rejection of the null hypothesis for the stock prices 
and returns of TEPCO and the Nikkei 225. This conclusion is valid when we use the 
Bayesian Information Criterion (BIC) to choose the lag length.

Table 2. Linearity test results

LR test of AR model (null) versus MS-AR model (alternative) 
Lag LR statistic

TEPCO
Ln P

1
3 Ψ

18563.50
18590.64

18984.14
19280.94

841.28***
1380.60***

100ΔLn P
1

4 Ψ
−18324.37
−18296.32

−17594.46
−17547.89

1459.86***
1496.86***

Nikkei 
225

Ln P 1 Ψ 22584.37 22706.41 244.08***

100ΔLn P
1

2 Ψ
−14324.33
−14317.31

−14093.05
−14000.51

462.56***
633.60***

(Note) *** indicates that the null hypothesis of no regime shift is regime shift is rejected at the 1% significance level. 
           Ψ Lag determined from the BIC.

1 The presence of ARCH effects in the residuals can be tested with the model tty εµ += , where y represents alternatively the log of 
the stock price or the log difference of the price series. With a prediction of no ARCH effects, the test statistic is  , 
where T is the sample size and R² is computed on the basis of an AR(p) process for 2

tε . 
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III. Stationarity of Series

A. Determination of breaks

To verify the stationarity of the stock prices and returns, we rely on unit root tests. 
However, to the extent that significant events occurred during this period, it is possible 
that breaks appeared in these series. For this reason, we test for the presence of breaks. 
Following Bai and Perron (1998, 2003a, 2003b), we use a multiple linear regression with 
m breaks:

                                  
                                                                                              (2)

where t = Tr-1 + 1, …, Tr, for r = 1,…, m + 1, and y represents the log or log 
difference, of price series. We treat the breaks (T1,…, Tm) as unknown;  (p×1) and  
(q×1) are vector covariates. In addition, because T = 8016, we use a trimming value of 

. For p = 0, we present the model estimation for two cases: with only a constant as 
a regressor (i.e., ), and for an AR(1) structure (i.e., ). 

Bai and Perron (1998), proposed three tests. The first considers that the number of 
breakpoints is not known. It is a double test of no break against an unknown number 
of breaks given some upper bound M. These are called the double maximum tests (Bai 
and Perron, 2003c p.14), since it involves maximization both for a given breakpoint and 
across various values of the test statistic for the breakpoint. This test permits to verify 
if there is at least one structural break. We calculate the UDmax and WDmax statistics. 
UDmax is the unity double maximum test in which the likelihood weights of each 
number of breaks is equal to 1, and the WDmax includes different weights that load the 
likelihoods of these numbers of breaks (depending on q values). 

The other two tests assume pre-defined breaks. On one side, we have a test of the 
null hypothesis of no structural break (m = 0) versus m = r breaks, labelled SupFT. On 
the other side, there is the test of . Estimates 
are performed using the sequential method supplemented by the use of the BIC and a 
modified Schwarz criterion (LWZ). 

The results are in Table 3. UDmax and WDmax tests confirm that the null hypothesis 
of no structural break is clearly rejected at the 5% error level when the alternative 
hypothesis is two breaks, with the exception of the rate of return of TEPCO in the model 
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with only the constant, as well as for the return of the Nikkei in the AR(1) model with 
UDmax.

With regard to the two estimates of Equation (2), the three tests and criteria indicate 
the presence of two to five breaks for the TEPCO stock returns. In addition, for the 
Nikkei 225, the sequential test shows one break in the stock return variable across both 
models. For the log prices, we obtain at least two breaks for all estimates.
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B. Unit root tests

To consider the presence of breaks, we use two unit-root tests: (1) Lumsdaine and 
Papell’s (LP) (1997) test, which allows two breaks under the alternative hypothesis of 
the unit root test, and (2) the Lee-Strazicich Lagrange Multiplier (LM) test (2003), which 
assumes two endogenous breaks for both the null and alternative hypotheses. The LP test 
involves a modified version of the augmented Dickey–Fuller test with two endogenous 
breaks. The model of stock returns (R) can then be written as 

               

where D1 and D2 are dummy variables that capture structural changes in the intercept 
at times TB1 and TB2, respectively. The optimal lag length (k) is determined on the basis 
of a general-to-specific approach (t-test, kmax = 10). The unit root hypothesis is that 

0=α . For the two stock returns (Table 4), the null hypothesis is rejected at the 5% 
level, confirming the stationarity of R. 

Next, the LM unit root test statistic is generated from the following regression:

                                           

where Z is a vector of exogenous variables, such that  with tD1  
and tD2  as shift dummies (crash model), and S~ denotes the detrended series, such that 

. In addition, δ~ are coefficients in the regression of tR∆  on tZ∆
, and xψ~  is given by  (Lee and Strazicich 2003). The LM test statistic is the 
t-ratio that checks the null hypothesis that 0=φ . The results of the LM tests in Table 4 
confirm the conclusions of the LP tests, though the selected break dates are different. The 
two stock returns are stationary. 

With regard to rates of return, the Nikkei 225 has been deeply influenced by global 
economic events, such as the real estate crash in Japan in the early 1990s, the Internet 
bubble burst in 2001, and the subprime crisis in 2008. In contrast, TEPCO has been 
affected more by the stock market crash in 1987, the Asian crisis in 1997, and the 
Fukushima catastrophe in 2011.
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IV. The TEPCO–Nikkei Correlation 

The correlation among changes in equity prices, or asset returns, constitutes an 
essential element of decision-making for portfolio asset allocation. In particular, we seek 
to verify, from the correlation between the returns of TEPCO and the Nikkei, whether 
the various shocks that have occurred since the 1980s have had comparable effects, or 
if conversely some specificity relates to the Fukushima disaster. For this purpose, we 
propose three correlation measures: a rolling correlation of daily changes, an asymmetric 
dynamic conditional correlation, and a correlation with regime switching. 

A. Rolling centered correlation

Figure 3 shows large variations in the one-year rolling correlations between TEPCO 
stock and the Nikkei by time period. The shaded (gray) zone corresponds to the post-
Fukushima period.

The high correlation (>0.60) relates to major economic or financial events, such as the 
1987 stock crash, the real estate crash in the early 1990s, the 2008 subprime crisis, and 
to a lesser extent, the Fukushima earthquake. The earthquake is associated mainly with 
a low correlation, because TEPCO was impacted far more than other listed companies. 
Three years after the nuclear accident, the correlation shifted back toward its usual 
value—that is, close to 0.40. The correlation rarely has been below 0.2; In general, the 
general macroeconomic and market parameters influence all listed firms including 
TEPCO. The only time the correlation was negative was during the Internet bubble 
(2000~2001), an occurrence that can be explained by the specific characteristics of that 
stock market overvaluation. That is, stock market and Nikkei increases were driven by 
high-tech and internet-related firms, whereas TEPCO activity was not affected by these 
technological and market changes.
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Figure 3.  One-year rolling correlation

 

 

 
 
 

(Note) Rolling correlation between daily changes in TEPCO price and Nikkei indexes

B. Dynamic conditional correlation

While the rolling correlation provides a first indication of the interdependence 
between daily changes in TEPCO and Nikkei, it does not take into account the possibility 
of asymmetry in volatilities. The large shocks in the Japanese financial market (Figure 2) 
and the measures of conditional variances (Appendix 1) confirm the so-called asymmetry 
phenomenon, where volatility increases more after a negative shock than after a positive 
shock. Consequently, this asymmetry will be present in conditional correlations.

Following Engle (2002) and Capiello et al. (2006), we use conditional volatilities to 
calculate the conditional correlation between TEPCO and the Nikkei 225. By allowing 
for conditional asymmetries in correlations, we adopt the Asymmetric Generalized 
Dynamic Conditional Correlation (AG-DCC) (Capiello et al. 2006). This process 
allows this phenomenon to be taken into account and thus provides a more accurate 
observation of the correlations between daily returns. Figure 4 depicts the dynamic 
correlations, which we use to answer two key questions: Did the Fukushima catastrophe 
modify the correlation between TEPCO and the Japanese stock market? What have 
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been the consequences of changes in the correlation from the perspective of portfolio 
diversification?

The results show a mean reversion after 2011; there is an increase in the correlation 
after the Fukushima catastrophe, just as after the real estate crash in the early 1990s and 
the Internet bubble burst in 2001, as well as before the 1987 stock market crash and the 
2008 subprime crisis. 

The AG-DCC figure exhibits values that, on average, are slightly smaller than those of 
the rolling daily correlation between TEPCO and the Nikkei 225. 

Figure 4. Conditional correlation: AG-DCC model

(Note) Conditional correlation between TEPCO and Nikkei returns

The results in Figure 4 have several implications for investment strategizing and 
portfolio diversification. If the correlation is high, including TEPCO in a portfolio does 
not improve diversification compared with investing in a Nikkei tracker or any Japanese 
market-mimicking portfolio. If the correlation is low, investing in a firm such as TEPCO 
is fruitful in terms of diversification and risk reduction. The weeks just after Fukushima 
catastrophe, when TEPCO stock dropped sharply, thus a recovery by TEPCO could 
confer two advantages—increased stock value and a moderation of risk levels—because 
the firm is now backed by the state. Moreover, in terms of sector diversification, TEPCO 
is still the country’s foremost electric producer, whatever the future energy policy of 
Japan. As a consequence, it remains a compelling option for any investor interested in 
the Japanese energy industry.
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C. Markov-switching dynamics 

Generally, the strategy of diversification depends on the degree of correlation between 
stocks and/or between stocks and the market index on the whole. From this perspective, 
we consider both the correlations between the volatilities and the relation between the 
returns of TEPCO and the Nikkei. Our observation of volatilities reveals two insights 
(Appendix 1). First, during the global crisis period and especially after the earthquake, 
the behaviors of TEPCO and the Nikkei differ. Second, we find asymmetric responses to 
shocks (GARCH estimations) and alternation between high- and low-volatility periods. 
To account for these characteristics, we address the potential conditional correlation of 
TEPCO stock with the Nikkei using the regime-switching dynamic correlation model 

of Pelletier (2006).2 We used a k-variate process, where ttt UHY 2/1= , and tU  is an i.i.d 
(0,IK) process. The time-varying covariance matrix tH  can be written as tttt SSH Γ=
, such that tΓ  contains the correlations, and tS  is a diagonal matrix of the standard 
deviations. This model exhibits a dynamic correlation since it admits regime switching 
of different correlation levels according to a Markov chain process. If we look at the 
two-state regime-switching model, we can determine the probabilities of being in a high 
correlation regime and a low correlation regime, respectively. Thus, Figure 5 shows the 
probability of being in a regime of low (high) correlation on the upper (bottom) graph. 
Therefore, we can distinguish between a high-correlation regime in the middle of the 
1980s, during the 1990s, and after the dot-com crisis, but not after the earthquake, which 
confirms the divergent reactions of TEPCO and the Nikkei 225. 

2  See also Billio and Caporin (2005).
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Figure 5. Smoothed probabilities of the two-regime model 

(Note) Regime switching dynamic correlation model with two regimes

Meanwhile, there were two lengthy periods in which the low-correlation regime 
dominated: 1997~2004 and 2008~2014. The first period includes the failure of Long-Term 
Credit Bank in 2001 and the effects of the burst of the Internet bubble in 2002.3 The second 
begins with the subprime crisis and includes the Fukushima catastrophe and the economic 
and electrical power consequences. We can conclude that these results point to the 
relevance of regime-switching models for the TEPCO–Nikkei correlation. To investigate 
this relation more deeply, in Section V, we explore the Markov-Switching Vector Error 
Correction (MS-VEC) model, which allows the variable response to regime fluctuations.

 

3  When we analyze the regime-switching correlation model with three states (Appendix 2), we find that the high-correlation regime has 
been the most frequent for TEPCO during the past 30 years. The momentum effect thus was more frequent than the mean-reverting effect 
among the return patterns. The medium-correlation regime is not very frequent, and the low-correlation regime is even less so.

High correlation regime

Low correlation regime
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V. Markov-switching Vector Autoregressive Model 

We investigate the relation between the rates of return of TEPCO and the Nikkei 
index. Traditionally, a Vector Autoregressive (VAR) model (Sims 1980) would analyze 
the relations among endogenous variables. But “if the time series are subject to shifts in 
regime, the stable VAR model with its time invariant parameters might be inappropriate 
” (Krolzig 1997, p.11). Therefore, the use of an MS-VAR is preferable. Owing to non-
stationary stock prices (LnP, Table 4), the possible cointegration relation between 
TEPCO share price and the Nikkei index lead us to consider an MS-VEC model. Before 
estimating this model, we must test for the presence of cointegration between the log-
level of the stock prices (Table 5). First, we apply the Johansen (1988, 1996) standard 
test. Second, following Johansen et al. (2000) and Joyeux (2007), we account for the 
possibility of breaks in the series, especially after the earthquake (Figure 1) and adopt a 
VAR model with structural breaks.

A trace test finds one cointegration vector at the .05 level when we include a dummy 
variable for the Fukushima catastrophe (DF).  

Table 5. Johansen cointegration tests

Standard model
H0 Trace Statistic Critical value (0.05) p-value Ψ

0=r 5.69 20.16 0.9547

1≤r 1.77 9.14 0.8167
Model with break

0=r 31.29 24.88 0.0058**

1≤r 3.10 12.11 0.7919
Normalized Cointegrating coefficients

LnTEPCO LnNikkei DF

1.000 -0.8296
(0.0057)

2.1135
(0.1384)

(Note) Ψ MacKinnon, Haug, and Michelis’s (1999) p-values. On the basis of the BIC, we retain three lags for each 
model. ** Rejection of the hypothesis at the 5% level; standard errors are in parentheses. To conserve space, 
we omit results with max eigenvalue statistics that give the same conclusions.
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The cointegration relation (Table 5) confirms that in the long run, an increase of the 
Nikkei index by 1% leads to a .82% increase in TEPCO’s price, thus the earthquake has a 
negative impact on the stock price. The use of a MS-VEC model is therefore relevant for 
studying the interactions between the TEPCO stock returns and the Nikkei index returns.

A. Markov-switching vector error correction model

The general idea behind the Markov-switching model is that the parameters of 
the underlying data-generating process of the observed time series vector tX  depend 
on the unobservable regime/state variable st. If we define the time series vector 

'],[ ttt LnNikkeiLnTepcoX = , the MS-VEC model with s = 1,…, M states and p lags is 
given by:

with

Here, Ai is the coefficient matrix, and 
tsΠ is the matrix that contains the long-run 

relation between the TEPCO stock price and the Nikkei index, with . In 
turn, β  represents the coefficients of the long-run effects that do not change over the 
entire period, tsα  is the regime-dependent coefficient, and tsα  reveals the coefficients 
that indicate how endogenous variables respond to the disequilibrium. That is, the speed 
at which the variables adjust to the long-run equilibrium relation across regimes. For 
example, the effect of a shock in the TEPCO price on the Nikkei index depends on 
whether the financial market is subject to high or low volatility.   

However, the regime variable ts  is assumed to follow an M-state Markov chain. The 
probability of being in regime j in the next period is conditional on the current regime i, 
which we assume is constant and exogenous. If  , the transition 
probabilities matrix P can be defined as follows:
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Using this model, we can study the relations among stock returns, and analyze the 
regime-dependent impulse response function (Ehrmann et al. 2003). 

 B. Empirical results

The parameters of the Markov-switching model are obtained with a Bayesian Markov 
chain Monte Carlo estimation, based on Gibbs sampling. Hahn et al. (2010) and Rey et 
al. (2014) present a technical explanation of this method. Balcilar et al. (2015) select this 
approach to study the response of stock prices to a shock in oil prices in an MS-VEC 
model. We adopt a similar approach and use the RATS code based on their paper. 

The model is estimated for the cases of two regimes, a high-volatility regime (Regime 
1) and a low-volatility regime (Regime 2). The transition probability matrix for high- and 
low-volatility regimes is as follows:

The first column indicates that the high-volatility regime is fairly stable and does not 
switch frequently to a low-volatility regime (probability of 5.34%). Comparatively, the 
low-volatility regime is less persistent; it switches to high-volatility with a probability of 
23.77% (second column). Table 6 expands on these results, specifying the characteristics 
of the two regimes.

Table 6. Regime properties

Probability Observations Duration (days)
Regime 1 
(high volatility) 0.8167 6683 18.7412

Regime 2 
(low volatility) 0.1833 1331 4.2058

The duration of the high-volatility regime is 18.74, or almost one month in the 
markets, given that there are normally 22 trading days in a month. Therefore, the 
momentum effect is substantial when volatility is high. In contrast, the low-volatility 
regime tends to create a faster reversion to the mean, because the duration is only 4.2 
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days. The high-volatility regime thus tends to stay high for a long time; the low-volatility 
regime tends to have a shorter time span and switches more frequently to high-volatility 
than the reverse. This asymmetric response to volatility shocks implies that risk aversion 
is difficult to include in a long-run portfolio strategy in this market.

Figure 6 plots the estimates of the smoothed probability of the high-volatility Regime 
1. Over the entire period, we find several periods of high volatility. The 1980s are 
dominated by high volatility, especially after 1985 and around 1990. Beginning with the 
Asian crisis of 1997 to 1998, Regime 1 dominates until the burst of the Internet bubble. 
Regime 1 also dominates during the subprime crisis and after the Fukushima disaster. 
After this most recent shock, Regime 1 appears to be the most durable. Conversely, 
the low-volatility Regime 2 appears to dominate only in the mid-1990s, the 2000s, and 
during the two years preceding the great earthquake. 

Figure 6. Smoothed probability of high-volatility regime

Probability
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C. Impulse response functions

Because “The regime-dependent impulse response function describes the relation 
between endogenous variables and fundamental disturbances within Markov-switching 
regime” (Ehrmann et al. 2003, p. 297), such an analysis is interesting for TEPCO, as its 
stock returns were affected by both endogenous and fundamental events. For regime 
i and the k endogenous variables, the impulse function response of the endogenous 
variable can be written as follows: 

We consider a one standard deviation shock to the kth fundamental disturbance in 
volatility at time t ( tku , ), where k represents the Nikkei index or the TEPCO stock, 
respectively. We analyze the case of a shock on the Nikkei and then the case of a 
shock on TEPCO.  Figures 7 and 8 plot the 20-day impulse responses of a one standard 
deviation shock. Impulse responses appear as solid lines (IRF) and 95-percent confidence 
intervals appear as dotted lines (LOWER and UPPER). If we consider a shock in the 
Nikkei, the responses of the Nikkei and TEPCO are positive, regardless of the regime. 
However, the standard deviations increase strongly in the high-volatility regime, with 
stronger responses than in the low-volatility regime. This distinction might arise because 
high-volatility regimes generally characterize periods in which large changes occur in the 
asset rates of return, upward or downward (Rey et al. 2014).

(8)
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Figure 7. Impulse responses to Nikkei 225 shock 

(over 20 day periods)

(Note) It plots the 20-day impulse responses of Nikkei 225 shock. Impulse responses appear as solid lines (IRF) and 
95-percent confidence intervals appear as dotted lines (LOWER and UPPER).

Figure 8 plots the impulse responses to a shock in TEPCO returns. We note a strong 
increase of standard deviations in the high-volatility regime, but the shock has no 
significant impact on the Nikkei. This result confirms that the events that affected 
TEPCO have had little influence on the Japanese stock market. We can also interpret 
the results of the bivariate model in terms of Granger causality such that that the Nikkei 
index frequently causes TEPCO stock price, whereas TEPCO does not cause the Nikkei. 
This finding also implies that even if the Fukushima catastrophe had a strong impact on 
TEPCO and the electricity sector as a whole, its impact on the rest of the economy was 
limited, as reflected by the behavior of the stock market index.

Nikkei 225

TEPCO

Low Volatility Regime High Volatility Regime
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Figure 8. Responses to TEPCO shock 

(over 20 day periods)

(Note) It plots the 20-day impulse responses of TEPCO shock. Impulse responses appear as solid lines (IRF) and 
95-percent confidence intervals appear as dotted lines (LOWER and UPPER).

VI. Conclusion 

Since the early 1980s, the Japanese financial market has been severely disrupted by 
various shocks, including stock market crashes, a real estate bubble burst, the Asian 
crisis, the subprime crisis, and recently, the Fukushima disaster. In this work, we seek 
to verify whether the Fukushima catastrophe had a specific impact, by analyzing the 
correlations between TEPCO stock price and the Nikkei 225 index. Using regime-
switching models, we show that though the great earthquake had a specific effect on 
the volatility of TEPCO, it does not appear to have had a lasting impact on the Japanese 
stock market as a whole. Moreover, the correlation between TEPCO stock returns and 
the Nikkei 225 returns does not indicate a particular behavioral change, such as a regime 
switch, as a result of the Fukushima disaster. 

Nikkei 225

TEPCO

Low Volatility Regime High Volatility Regime
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This study led to a more detailed investigation of the relationship between the 
Japanese stock return, based on the Nikkei 225 index, and a company stock return 
that suffered an exceptionally large negative shock. The correlations studies show that 
although the TEPCO shock is considerable, it has not affected the market as a whole. 
This point has been clarified by using models with a change of regime. Periods with a 
probability of high correlation are well-identified; from early 1980s to mid-1990s; mid-
2000s and 2010s. Conversely, the low-correlation regime dominated in the late 1990s and 
during the dot.com crisis, as well as after the subprime crisis, including the Fukushima 
period. In addition, the study of impulse responses to a TEPCO shock show that the 
impact on the Nikkei is low, regardless of the high or low volatility regime. Based on 
these observations, it can be concluded that a shock, however important it may be, may 
not have an overall impact when it affects an industrial enterprise, even if it is a leader 
in its sector. In the case of the Fukushima disaster, it is likely that on the one hand, the 
market anticipated a rescue of TEPCO by the Japanese State, and on the other hand, it 
anticipated that the fall in nuclear power production would be quickly compensated by 
other sources of energy.

Our findings pertaining to the returns, volatilities, and potential causal relationship 
between the Nikkei index and TEPCO help clarify the long-run volatility process of 
these series. With these findings, investors can make better-informed choices.

Received 28 September 2017, Revised 15 January 2018, Accepted 29 January 2018
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Appendices

Appendix 1: Conditional standard deviations

To compute volatility for both the Nikkei and TEPCO returns, we estimate various 
GARCH models. To save space, we have omitted detailed results, but we note that the 
higher log-likelihoods are obtained for APGARCH or Asymmetric Power Generalized 
Autoregressive Conditional Heteroscedasticity model. This model, introduced by Ding, 
Engle and Granger (1993) captures volatility clustering.  The APGARCH model includes 
a leverage term, which allows positive and negative shocks of equal magnitude to 
produce an unequal response from the market. In other terms, good news and bad news 
have different predictability for future volatility. Figures A1 and A2 plot the conditional 
standard deviations/volatilities for this model. 
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Figure A1. TEPCO APGARCH(1,1) standard deviation

Figure A2. Nikkei APGARCH(1,1) standard deviation
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Appendix 2: Regime-switching dynamic correlation/Pelletier model

High correlation regime 

Medium correlation regime 

Low correlation regime 


