The Contribution of Intra-Regional and Extra-Regional Trade to Growth: Evidence from the European Union

Rossitza B. Wooster
Portland State University

Tepa M. Banda
Economic and Planning Systems

Smile Dube
California State University, Sacramento

Abstract

In this paper, we assess whether trade among member countries of a regional trade agreement (intra-regional trade) contributes more to output growth than trade with nonmember countries (extra-regional trade). We use Granger causality tests to evaluate the trade-growth relationship in 13 countries from the European Union and separately estimate the differential impact of the two kinds of trade on economic growth over the period 1980-2003. In addition to the basic influences of investment and population growth, we find that intra-regional trade has had a lesser impact on growth in output per capita than extra-regional trade by almost 30%.

• JEL classification: F13, F43, C33
I. Introduction

Multilateral trade negotiations between countries in the World Trade Organization that began as part of the Doha round in 2001, reached a stalemate in July 2006. The collapse in global trade talks was accompanied with a renewed emphasis on regional trade integration: the European Union is looking to strengthen trading relations with countries in Asia; India is in the process of signing trade agreements with Japan and the European union; and Asian countries such as China, Japan and South Korea are discussing a regional free trade area with Southeast Asia (New York Times, July 26, 2006). This new wave of regionalism comes at a time when the concern over the proliferation of regional trade agreements (RTAs) is already high. While increased openness (albeit regional) has positive effects on growth in per capita income (Grossman and Helpman, 1991; Sala-i-Martin and Barro, 1997), the preferential nature of RTAs may actually impede the global process of trade liberalization Bhagwati (1992), or even reduce global welfare through inefficient trade flows that divert, rather than create, trade (Frankel et al., 1995; Venables, 2003).

In general, the economic objectives of both global trade liberalization and RTAs are to reduce barriers to trade between countries and spur economic growth. A natural question that therefore arises with respect to the proliferation of RTAs, is whether trade among member countries (intra-regional trade) contributes more to output growth than trade with nonmember countries (extra-regional trade). Previous literature provides mixed evidence regarding the contribution of integration on economic growth. For example, studies of the European Union show that regional integration and its effects on trade and growth have been positive in some analyses (Italianer, 1994; Henrekson et al., 1997), while in others, EU membership appears insignificant in explaining GDP growth rates (Landau, 1995; Vamvakidis, 1999; Vanhoudt, 1999).

In empirical studies of the effects of regional integration on growth, membership in an RTA is usually quantified using dummy variables (Deardorff and Stern, 2002). This is a possible limitation since such variables do not capture dynamic effects and by construction imply that trade has the same effect across members regardless of trade partners involved. To the best of our knowledge, no studies have
been done that explicitly compare the differential impacts of intra-regional and extra-regional trade on the growth rates of GDP in RTA member countries.

The objective of this paper, therefore, is to analyze the composition of trade within an RTA and investigate whether intra-regional trade spurs higher output growth compared to extra-regional trade. We use data from the European Union comprising the first 15 member states (EU15). These countries belong to one of the oldest and most established RTAs and emerge as a natural choice for the investigation of how trade patterns affect economic growth for two reasons. First, the longevity of the trade agreement between EU member countries allows us to use a relatively long span in our sample (1980 – 2003). Second, trade and economic data are readily available and consistently reported for member states in terms of both measurement and frequency.

We begin our analysis with a series of Granger causality tests which help us establish a minimum condition for causality in the trade-growth relationship for EU countries. We find that trade variables Granger-cause growth in all EU countries except Finland and the United Kingdom. Next, we estimate the marginal effects of intra-regional and extra-regional trade on economic growth in the EU using a standard growth model with trade intensities as our focus variables. Our empirical results suggest that intra-regional trade has had a lesser impact on output growth than extra-regional trade by almost 30 percent, holding all other factors constant. These results are robust to the exclusion of Finland and the United Kingdom. Our results also hold in sensitivity tests in which we omit Ireland – a country that stands out in terms of both trade and growth compared to other EU countries in our sample.

Previous literature suggests several explanations for the significantly lower contribution of intra-regional trade to output growth per capita. First, the gains from participating in an RTA may be limited by the size of the market (Alcalá and Ciccone, 2003; Johansson, 2001). Second, if trade contributes to economic growth through the transmission of knowledge capital, then extra-regional trade is more likely to contribute to growth due to the greater diversity of trading partners (Grossman and Helpman, 1991).

The remainder of the paper is organized as follows. Section II provides an overview of the proliferation of RTAs and reviews theoretical considerations

Footnote: The empirical estimation includes 13 countries in the sample: Austria, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden and United Kingdom. Belgium and Luxembourg are excluded because comparable data on trade is available only for the period 2000 – 2003. This period is very short relative to the 1980 – 2003 study period.
related to trade and economic growth. Section III describes the data. Section IV presents the research methodology. Results of the empirical estimation are discussed in section V. In section VI we provide concluding remarks.

II. Background

A. Regional Trade Agreements: Overview

The growth of regional trade agreements emerges as one of the major international relations developments of recent years. In the period 1948-1994, the General Agreement on Trade and Tariffs (GATT) received 124 notifications of RTAs (relating to trade in goods). During the 1990s, RTAs have played an increasingly important role in the global trading system. They have often provided opportunities for more comprehensive dismantling of trade barriers and greater harmonization of rules governing trade than can be accomplished under multilateral negotiations. This is particularly true of the EU and the North American Free Trade Agreement (NAFTA), both of which developed important precedents for multilateral negotiations and other regional arrangements (World Bank, 2004).

The surge in RTAs has continued unabated since the early 1990s. As Figure 1 shows, there are 211 RTAs currently in force (as of September 2006). Of these, 184

Figure 1. Notifications of RTAs by Date of Entry into Force

agreements have been notified since the creation of the World Trade Organization (WTO) in 1995 and the vast majority of WTO members are party to one or more RTAs (Crawford and Fiorentino, 2005). Consistent with this surge in RTAs, global trade flows remain less dense than regional trading ties, even for countries operating without substantial trade barriers (Chortareas and Pelagidis, 2004). For the EU in particular, intra-regional goods trade volumes have consistently exceeded extra-regional trade over the past decade (see Figure 2) which in part reflects the extent to which trade barriers have been reduced.

While regional trade liberalization is a major objective of RTAs, their structure can vary significantly. At their simplest, RTAs merely remove tariffs on intra-regional trade in goods, but many go beyond that to cover non-tariff barriers and to extend liberalization to trade and investment. RTAs with more advanced structures have the objective of economic union, and they involve the construction of shared executive, judicial, and legislative institutions. Formally, there are four basic types of trade arrangements (Radelet, 1997). Free (or preferential) trade areas, such as NAFTA, allow member countries to reduce or eliminate trade barriers between each other, while maintaining barriers for non-member countries. Customs unions, such as the Southern African Customs Union (SACU)\(^2\), allow member countries to

Figure 2. The Composition of Trade in the European Union: 1991 – 2003

\(^1\) Excludes Belgium and Luxembourg. Source: UN Comtrade data

\(^2\) Members of SACU include South Africa, Botswana, Lesotho, Namibia, and Swaziland.

\(^3\) Members of MERCOSUR include Argentina, Bolivia, Brazil, Chile, Paraguay, and Uruguay.
reduce or eliminate barriers to trade between each other and adopt a common external tariff towards non-member countries. Common markets, such as MERCOSUR\(^3\), allow members to expand the basic customs union by reducing the barriers to the movement of factors of production (labor and capital). Finally, economic and/or monetary unions such as the EU, allow member countries to harmonize national economic and monetary policies and exchange rate regimes.

B. Trade and Growth

The trade-theoretic literature discusses several channels through which trade can affect economic growth. First, trade is a vehicle through which technological innovations and knowledge are transmitted between trading partners (Grossman and Helpman, 1991, and Sala-i-Martin and Barro, 1997). Second, higher trade openness also increases competition in the local market which in turn increases productive efficiency and economic growth (Vickers and Yarrow, 1991; Wacziarg, 2001). Finally, countries that can access larger markets through trade can also benefit economically. For example, Alcalá and Ciccone (2003) demonstrate that trade mattered more for growth where domestic markets were smaller suggesting that countries with small domestic markets benefit more from trade openness. Further, by increasing the size of the market, trade openness allows economies to better capture the potential benefits of increasing returns to scale (Ades and Glaeser, 1999).

Trade liberalization may also contribute to growth by creating incentives for governments to adopt less distortionary domestic policies and more disciplined management of the macro economy. For instance, Bassanini et al. (2001) discuss links between policy settings, institutions and economic growth in OECD countries on the basis of cross-country time-series regressions. Their results confirm that in addition to capital accumulation, the macroeconomic environment, R&D activity, and well developed financial markets, trade openness significantly contributes to growth. More importantly they find that an increase in trade exposure of 10 percentage points, (such as the change observed over the past two decades in the OECD countries), could lead to an increase in steady-state output per capita of 4 per cent. Further evidence on the contribution of trade to economic growth comes from Wacziarg (2001) who investigates the link between trade policy and economic growth in the time period 1970 – 1989. The results suggest that trade openness affects growth mainly by raising the ratio of domestic investment to GDP. In addition, the rate of physical capital accumulation explains between 46%
and 63% of the impact of trade policy on economic growth while technology transmission (measured as FDI inflows) and the quality of macroeconomic policies each account for roughly 20% of the overall effect.

The positive effect of trade openness on growth has not, however, found consistent support in the literature (Rodriguez and Rodrik, 2001). Although some studies point to gains from trade, trade liberalization may have a negative effect on growth for countries in transition from controlled to market economies (such as most countries in Eastern Europe, Asia, and sub-Saharan Africa). For example, Parikh and Stirbu (2004) use a sample of 42 developing countries in Asia, Africa and Latin America to examine the impact of trade liberalization on economic growth, investment share of GDP, openness, trade balance and current accounts (as percentages of GDP). The authors find that, on average, liberalization is associated with deterioration in the trade balance implying that countries would have difficulty reaching potential or planned growth in the subsequent periods after liberalization.

C. Regional Trade, Growth and European Integration

Prior to the 1990s, most studies focused on the effects of integration on trade, not income or economic growth. This focus is perhaps due to Viner (1950) who focused on trade creation and trade diversion. Consequently, within static economic models employed until the 1990s, there was little or no emphasis on how integration and trade affect growth in per capita income. For example, Srinivasan et al. (1993) surveyed the empirical literature on the effects of regionalism up to the early 1990s, and identified only three retrospective empirical studies, all of which dealt only with effects on trade. These studies showed that European integration⁴ resulted in a large expansion of trade, especially between member countries. However, Viner (1950) had shown that not all trade within a trading bloc is welfare improving, so this does not itself assure that the EU had increased incomes.

A major drawback in early empirical studies was the lack of mechanism to explain why increases in trade are associated with increases in income.

⁴The EU began as the European Coal and Steel Community (ECSC) in 1951 with six members: Belgium, West Germany, Luxembourg, France, Italy and the Netherlands. In 1957, following the signing of the Treaties of Rome, the six ECSC countries created the European Atomic Energy Community (EURATOM) and the European Economic Community (EEC). The member states set about removing trade barriers between them and forming a “common market”. The three communities merged in 1967 to form a single Commission and a single Council of Ministers as well as the European Parliament. Finally, the Treaty of Maastricht in 1992 ushered in the EU by adding new forms of co-operation between the member state governments.
capture dynamic effects. These were generally unspecified and were assumed to come from the increased trade liberalization that comes with the formation of an RTA. The first effort to measure dynamic effects was by Brada and Mendez (1988) who reported panel regression estimates for two equations with investment shares and growth rates as dependent variables and with dummy variables for participation in six regional integration arrangements including the EU. The authors found that EU membership is associated with an increase in investment shares but not growth rate. In fact, their growth rate equation included capital accumulation as an explanatory variable, which is consistent with EU membership stimulating the growth rate only via investment and not improvements in technology.

By the mid 1990s, both theory and empirical work on dynamic effects had progressed far beyond the 1950s. Grossman and Helpman (1991) extended the closed-economy, endogenous-growth models of Romer (1986) and Lucas (1988) to show how international trade could increase long-run rates of economic growth. Studies, such as Baldwin (1992), also quantified dynamic effects and showed prospective gains from the European Community’s Single Market. The empirical literature also sought to establish a direct link between trade and growth. For example, Hoeller et al. (1998) estimated time series and pooled regressions both in growth rates and in levels using co-integration techniques to test directly for the link between trade and growth in Europe through the technology channel. Their results point to a direct positive impact of openness on innovation and suggest that it is openness in general, rather than regional trade integration that has favored growth in Europe. Similarly, Coe and Moghadam (1993) show that trade and capital (broadly defined) account for almost all the growth in the French economy in the last two decades while Antonelli et al., (2003) document that economic growth in Italy has been critically influenced by external technology funneled by imports of investment goods.

In recent literature, the debate on globalization versus regionalization has also motivated studies that analyze the trade-growth relationship in the context of whether countries gain or lose from their participation in an RTA. One again the empirical evidence here is mixed. For instance, Venables (2003) reviews the cost and benefits of RTA membership and finds that the effect of integration on economic growth greatly depends on the extent of comparative advantage of member countries relative to each other and the rest of the world. Moreover, this study finds little evidence that regionalism has retarded multilateral trade
liberalization or that continuing expansion of regional agreements will obviate the need for multilateral liberalization efforts. In a related vein of research, Kim and Shin (2002), conclude that globalization and regionalization are not contradictory processes and that trade regionalization is trade-creating, rather than trade diverting. Specifically, the authors show that although trade intensities among countries within the same geographic region are greater than those between countries in different geographic regions, these intensities increase concurrently across all time periods between 1959 and 1996.

Further evidence by Chortareas and Pelagidis (2004) shows that, contrary to conventional wisdom, international trade flows remain less dense than regional trading ties, even for countries operating without substantial trade barriers. In particular, trade regionalism grew much faster among EU member countries than did EU inter-regional transactions. In fact, some studies suggest that there is a limited potential for increased trade openness in countries that have joined together to form limited-barrier environments for their production outputs and their consumer demands. For instance, Kotcherlakota and Sack-Rittenhouse (2000), test the hypothesis that regional trading blocs initially increase the propensity for openness of trade for their member countries. The find that as a country grows in development, openness will level off, or even decline when protectionism issues are involved. They conclude that of the countries studied, it is generally true that regional blocs have initial success achieving increased openness, but over time, this effect will level off or even decline.

III. Data

In this section we describe the data used in the empirical analysis below. Table 1 summarizes the variables used in this analysis, the data sources, and provides overall descriptive statistics. Our focus variables, intra-regional and extra-regional merchandize trade, were constructed using data from the United Nations Comtrade database which was available for all countries over the period 1980-2003.\(^5\) The

\(^5\)Trade in services is not considered here as the removal of trade barriers implemented within the EU trade agreement applies only to goods. Initiatives to remove barriers to trade in services are currently underway: in April 2006 the European Commission adopted a proposal for the creation of an EU internal market in services (http://ec.europa.eu/internal_market/services/services-dir/index_en.htm). However, this process is not complete and trade between European countries continues to be predominantly in merchandize, with only 20% of all trade coming from the service sector as member states tend to ‘self supply’ in terms of services (European Commission, 2002).
Table 1. Variables, Data Sources, and Summary Statistics: 1980 - 2003

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Sources</th>
<th>Summary Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population growth ($\Delta \ln P$)</td>
<td>The rate of growth in total population</td>
<td>IMF International Financial Statistics database</td>
<td>312</td>
</tr>
<tr>
<td>Investment ($\ln k$)</td>
<td>The percentage share of investment in GDP</td>
<td>Penn World Tables 6.1</td>
<td>273</td>
</tr>
<tr>
<td>Intra-regional trade ($\ln r$)</td>
<td>Total intra-regional trade (exports and imports) as a percentage of GDP</td>
<td>UN Comtrade database</td>
<td>301</td>
</tr>
<tr>
<td>Extra-regional trade ($\ln w$)</td>
<td>Total extra-regional trade (exports and imports) as a percentage of GDP.</td>
<td>UN Comtrade database</td>
<td>301</td>
</tr>
<tr>
<td>Indicators of Government Size ($\ln G$)</td>
<td>Government consumption expenditure as a percentage of GDP</td>
<td>IMF International Financial Statistics database</td>
<td>312</td>
</tr>
<tr>
<td>Inflation ($\ln \pi$)</td>
<td>The rate of change of the GDP deflator ($\Delta \ln GDP$-deflator)</td>
<td>IMF International Financial Statistics database</td>
<td>312</td>
</tr>
</tbody>
</table>
import, export, and total trade values were scaled by GDP in each year to obtain intra-regional and extra-regional trade shares relative to the size of the economy for each country. Data on GDP per capita expressed in 2000 purchasing power parities were obtained from the OECD Social Indicators database. Data on investment as a share of GDP were obtained from the Penn World Tables 6.1 for all countries. All remaining variables were obtained from the IMF International Financial Statistics database. Government consumption expenditures were also scaled by GDP to obtain the relative size of government with respect to the economy for each country. The difference in logs was used to approximate growth rates for GDP per capita, population, and the GDP deflator (inflation).

Descriptive statistics in Table 1 show that output growth per capita averaged 2 percent for sample countries over the period 1980 to 2003. The average population growth rate was 0.34 percent, while the share of investment in GDP averaged 22 percent across all countries over the period. The share of investment showed the least variability among all variables, possibly as a result of a strong commitment to capital accumulation in the countries sampled. Extra-regional and intra-regional trade relative to GDP averaged relatively high at 28% and 29% respectively. Intra-regional trade however, exhibited slightly higher variability compared to extra-regional trade, perhaps an indication that such trade was more vulnerable to shocks in the regional economies. Government consumption spending as a share of GDP averaged approximately as high as investment at 21.7% and 22%, respectively, while inflation was relatively low at 5.5 percent, on average.

Table 2 presents descriptive statistics for each sample country which highlight the variation in trade patterns between countries. Overall, countries with large trade shares exhibited higher mean growth rates. Specifically, Ireland stands out as a leader in both growth and intra-regional trade with mean GDP per capita growth of 4.4% and mean intra-regional trade intensity of 70.2% of GDP over the sample period. This motivates the need for a sensitivity analysis that excludes Ireland in the empirical estimation below. Finally, the composition of commodities in each of these trade patterns is presented in Figure 3. An examination reveals no major differences in the make-up of intra-regional and extra-regional trade but also highlights some differences. Specifically, a higher portion of agricultural products, chemicals, and manufactured goods are exchanged between EU member countries that traded with the rest of the world. Also machinery and transportation equipment stands out as the largest product category in both intra- and extra-regional trade.
<table>
<thead>
<tr>
<th>Variables</th>
<th>GDP per capita growth (ΔlogY)</th>
<th>Population growth (n)</th>
<th>Investment (k)</th>
<th>Intra-regional trade (r)</th>
<th>Extra-regional trade (w)</th>
<th>Indicator of Govt. Size (G)</th>
<th>Inflation (π)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>Mean Std Dev</td>
</tr>
<tr>
<td>Austria</td>
<td>1.9% 1.20</td>
<td>0.3% 0.31</td>
<td>25.1% 1.07</td>
<td>24.8% 13.74</td>
<td>25.2% 7.57</td>
<td>17.3% 3.34</td>
<td>2.4% 2.40</td>
</tr>
<tr>
<td>Denmark</td>
<td>1.5% 1.63</td>
<td>0.2% 0.17</td>
<td>21.3% 2.40</td>
<td>34.3% 9.53</td>
<td>29.0% 5.64</td>
<td>31.3% 5.12</td>
<td>4.0% 2.88</td>
</tr>
<tr>
<td>Finland</td>
<td>1.9% 3.11</td>
<td>0.4% 0.15</td>
<td>24.3% 3.55</td>
<td>28.0% 6.28</td>
<td>31.1% 7.22</td>
<td>25.2% 4.77</td>
<td>4.2% 3.13</td>
</tr>
<tr>
<td>France</td>
<td>1.5% 1.18</td>
<td>0.5% 0.11</td>
<td>23.8% 1.66</td>
<td>17.4% 5.88</td>
<td>19.8% 5.10</td>
<td>23.2% 3.79</td>
<td>3.8% 3.33</td>
</tr>
<tr>
<td>Germany</td>
<td>1.6% 1.54</td>
<td>0.2% 0.28</td>
<td>23.1% 0.96</td>
<td>26.4% 2.64</td>
<td>24.6% 2.30</td>
<td>19.4% 3.85</td>
<td>2.5% 1.64</td>
</tr>
<tr>
<td>Greece</td>
<td>1.3% 2.25</td>
<td>0.5% 0.25</td>
<td>21.1% 1.64</td>
<td>21.8% 8.97</td>
<td>30.9% 29.24</td>
<td>24.4% 17.08</td>
<td>12.4% 6.46</td>
</tr>
<tr>
<td>Ireland</td>
<td>4.4% 3.10</td>
<td>0.6% 0.53</td>
<td>19.7% 2.03</td>
<td>70.2% 12.25</td>
<td>43.8% 6.83</td>
<td>17.3% 4.08</td>
<td>5.6% 4.06</td>
</tr>
<tr>
<td>Italy</td>
<td>1.7% 1.20</td>
<td>0.1% 0.09</td>
<td>21.8% 1.36</td>
<td>17.0% 3.75</td>
<td>21.4% 8.77</td>
<td>19.9% 4.25</td>
<td>6.9% 4.97</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1.6% 1.63</td>
<td>0.6% 0.14</td>
<td>22.1% 1.15</td>
<td>37.0% 15.40</td>
<td>43.7% 10.34</td>
<td>15.5% 4.05</td>
<td>2.2% 1.75</td>
</tr>
<tr>
<td>Portugal</td>
<td>2.4% 2.72</td>
<td>0.1% 0.29</td>
<td>21.9% 3.67</td>
<td>31.2% 8.00</td>
<td>24.1% 22.51</td>
<td>16.6% 6.80</td>
<td>11.0% 7.95</td>
</tr>
<tr>
<td>Spain</td>
<td>2.3% 1.63</td>
<td>0.4% 0.13</td>
<td>23.4% 1.75</td>
<td>17.0% 5.81</td>
<td>15.2% 5.32</td>
<td>15.5% 3.28</td>
<td>6.7% 3.75</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.7% 1.89</td>
<td>0.3% 0.26</td>
<td>20.5% 2.11</td>
<td>33.7% 6.19</td>
<td>33.3% 9.23</td>
<td>35.6% 8.03</td>
<td>4.7% 4.09</td>
</tr>
<tr>
<td>UK</td>
<td>2.0% 1.85</td>
<td>0.3% 0.09</td>
<td>17.9% 1.97</td>
<td>18.7% 3.08</td>
<td>24.4% 5.88</td>
<td>21.0% 3.48</td>
<td>4.9% 3.53</td>
</tr>
</tbody>
</table>

Sources: UN Comtrade, IMF International Financial Statistics, Penn World Tables 6.1 and OECD social indicators databases.
IV. Empirical Framework

A. Granger Causality Tests

Our empirical analysis begins with an effort to statistically determine the direction of causality between trade and growth in our sample. To this end we estimate a series of Granger-causality tests\(^6\) for EU countries. In general, if Granger causality is found to run only in one direction, say from trade to growth, then the case for linear prediction can be made. In addition, lagging trade variables when estimating their effect on output ensures that observations on trade precede growth effects. Thus, if a significant relationship exists, then the case for linear prediction is strengthened.

Table 3 shows the results of the tests for Granger causality between trade and per capita output growth. Extra-regional trade granger causes growth in 10 of the 13 countries, while intra-regional trade Granger causes growth in 7 countries. Jointly the trade variables Granger cause growth in 11 of the 13 countries or in 85 percent of the countries. The two countries for which Granger causality did not hold are Finland and the United Kingdom (UK). It should be noted that the Granger causality results here should not be viewed true causality. Rather, they can be best interpreted as an attempt at specifying a necessary condition for a causal relation.

\(^6\)Generally, a variable \(x_i\) is Granger-causal for \(y_j\) if \(x_i\) helps predict \(y_j\) at some stage in the future.
B. Estimation Methodology

Following Bassanini et al. (2001) we consider a specification which includes the basic determinants of output growth. Specifically, we include the accumulation of physical capital and population growth as well as a set of policy and institutional factors potentially affecting economic efficiency. These include: the size of government (which we measure as government consumption spending); inflation; and trade intensities – intra-regional and extra-regional trade (the variables of interest for the study). Thus, the equation can be written as follows:

\[\Delta \ln y_{it} = \beta_0 + \beta_1 \ln k_{it} + \beta_2 n_{it} + \beta_3 \ln r_{it-1} + \beta_4 \ln w_{it-1} + \beta_5 \ln G_{it} + \beta_6 \ln \pi_{it} + \alpha_1 \Delta \ln k_{it} + \alpha_2 \Delta n_{it} + \alpha_3 \Delta \ln r_{it} + \alpha_4 \Delta \ln w_{it} + \alpha_5 \Delta \ln G_{it} + \alpha_6 \Delta \ln \pi_{it} + \varepsilon_{it} \]

(1)

where \(k \) is the share of investment in GDP; \(n \) is population growth; \(r \) is the ratio of intra-regional trade to GDP; \(w \) is the ratio of extra-regional trade to GDP; \(G \) is government consumption expenditure relative to GDP; \(\pi \) is inflation; the \(\pi \)-regressors capture short-term dynamics; and \(\varepsilon \) is the usual zero-mean error term.

The \(\beta \)-coefficients measure the long-term growth effects of the respective explanatory variables. To control for short-run adjustments in growth the model
also includes regressors (α-coefficients) that are intended to proxy for cyclical components inherent in year-to-year variations in output. However, it should be noted that the α-coefficients in the model may not necessarily represent transitory growth effects, but may indicate more permanent effects (Bassanini et al., 2001). A priori expectations of the model coefficients are presented in Table 4. The expected sign on population growth rate is negative indicating that increases in the population growth rate will lead to a lower average income. We expect that higher investment shares in GDP and higher intra- and extra-regional trade intensities will be associated with higher output growth. Finally, we expect government size and inflation to be inversely associated with output growth.

Based on the summary statistics in Table 2 and the Granger causality results in Table 3, we estimate several specifications of the model to verify the robustness of our results. In the first specification we use the entire sample of 13 countries. In the second, we use the 11 countries where Granger causality holds in order to check for sensitivity of the results when Finland and the UK are excluded. Finally, we estimate equation 1 excluding Ireland. As Table 2 shows, Ireland stands out in the sample with its high economic growth and intra-regional trade intensity. Finally, we use lagged values for our trade intensity variables to ensure that trade observations precede growth effects.

V. Empirical Results

We report fixed effects estimation results in Table 5 with standard errors for each coefficient are shown in parenthesis. The signs of the regression coefficients are consistent with theoretical predictions and robust across specifications. The

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expected Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population Growth (n)</td>
<td>Negative (-)</td>
</tr>
<tr>
<td>Investment (lnk)</td>
<td>Positive (+)</td>
</tr>
<tr>
<td>Intra-regional Trade (lnr)</td>
<td>Positive (+)</td>
</tr>
<tr>
<td>Extra regional trade (lnw)</td>
<td>Positive (+)</td>
</tr>
<tr>
<td>Indicator of Government Size (lnG)</td>
<td>Negative (-)</td>
</tr>
<tr>
<td>Inflation ($ln\pi$)</td>
<td>Negative (-)</td>
</tr>
</tbody>
</table>

Note: Expectations are not implied for short-term explanatory variables.

This is the case in models that explicitly consider different types of capital goods (e.g. physical and human), each characterized by its own accumulation process (e.g. investment and education).
coefficient on the log of investment is small, while the rate of change in the share of investment has a very strong and significant effect on growth. This suggests that growth responded more strongly to the rate at which investment levels changed. Conversely, the rate at which government consumption spending increases has a

Table 5. The Contribution of Intra- and Extra-Regional Trade to Output Growth – Fixed Effects Estimation.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Estimated Coefficients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Sample¹</td>
<td>Sample Excluding UK & Finland ²</td>
</tr>
<tr>
<td></td>
<td>(N=237)</td>
<td>(N=119)</td>
</tr>
<tr>
<td>Investment (lnk)</td>
<td>1.67*</td>
<td>2.39**</td>
</tr>
<tr>
<td></td>
<td>(0.97)</td>
<td>(1.15)</td>
</tr>
<tr>
<td>Population growth (n)</td>
<td>-0.66*</td>
<td>-0.57</td>
</tr>
<tr>
<td></td>
<td>(0.40)</td>
<td>(0.41)</td>
</tr>
<tr>
<td>Lagged Intra-regional trade (lnrt-1)</td>
<td>2.37***</td>
<td>2.12***</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.47)</td>
</tr>
<tr>
<td>Lagged Extra-regional trade (lnwt-1)</td>
<td>3.02***</td>
<td>2.79***</td>
</tr>
<tr>
<td></td>
<td>(0.36)</td>
<td>(0.39)</td>
</tr>
<tr>
<td>Indicator of Government size (lnG)</td>
<td>-6.21***</td>
<td>-5.76***</td>
</tr>
<tr>
<td></td>
<td>(0.68)</td>
<td>(0.74)</td>
</tr>
<tr>
<td>Inflation (lnπ)</td>
<td>-0.52***</td>
<td>-0.61***</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.20)</td>
</tr>
</tbody>
</table>

Short-run regressors:

Δlnk	15.92***	14.08***	17.27***
	(1.46)	(1.61)	(1.50)
Δn	0.09	0.06	0.04
	(0.58)	(0.60)	(0.64)
Δlnr	1.94**	2.08**	1.20
	(0.88)	(0.90)	(0.84)
Δlnw	2.32***	1.82**	1.50**
	(0.75)	(0.80)	(0.72)
ΔlnG	3.64***	3.43***	3.27***
	(1.07)	(1.13)	(1.03)
Δlnπ	0.54***	0.54**	0.54***
	(0.20)	(0.24)	(0.19)

Notes: N = no. of observations; ***, **, * denote significance at the 1%, 5% and 10% respectively. Standard errors in parentheses.

1. $R^2 = 0.45$ overall; 0.68 within; 0.40 between; Model P-value =0.000.
2. $R^2 = 0.43$ overall; 0.65 within; 0.39 between; Model P-value =0.000.
3. $R^2 = 0.46$ overall; 0.68 within; 0.12 between; Model P-value =0.000.
significant positive effect on growth while in the long-run, this effect is negative and statistically significant, a likely outcome of the social welfare programs in a number of EU countries. The log of inflation is also significant and negative everywhere which may reflect the strong stance against inflation that a number of EU monetary authorities have taken. In addition, the rate of change in inflation has a positive and highly significant effect on output growth. This possibly reflects a short-term Philips-type tradeoff where an increase in inflation is associated with a reduction in unemployment and consequently resulting in a positive impact on growth.

Our focus variables, extra-regional trade and intra-regional trade, are both significant and both have positive effects on output growth per capita. The coefficients on the rate of change variables (short-run regressors) are both positive and significant. These similarities are a likely indication that these variables have similar structural linkages to growth. Of interest is the size of these coefficients. The coefficient on extra-regional trade (3.02) is about 30 percent higher than the coefficient on intra-regional trade (2.37). This suggests that, all else equal, a 1 percent increase in each of these variables, extra-regional trade will increase growth by 0.03 percentage points while intra-regional trade will increase growth by 0.024 percentage points. To test whether the difference in the trade coefficients is statistically significant, we perform a difference-in-means test. Our null hypothesis is that the difference in means of the estimated coefficients on lnrt-1 and lnwt-1 is zero. The computed test statistic is 17.42 (P-value = 0.000) which rejects the null hypothesis, implying that, extra-regional trade has a significantly greater effect on growth than intra-regional trade in the sample countries.

Our results support empirical findings in previous literature on trade, regionalism and growth. With respect to trade and growth, Bassanini et al. (2001) conclude that an increase in trade exposure is associated with an increase in steady-state output per capita for a sample of 21 OECD countries between 1971 and 1998. Italianer (1994) found that trade based proxies for integration increased per capita output growth by 0.3 percentage points in six EU countries between 1961 and 1992. Similarly, Alcalá and Ciccone (2003) found that an increase in real openness (total trade measured in purchasing power parities relative to GDP) from the 25th to 75th percentile was associated with a 0.8 percent increase in the annual growth rate.

Regarding the effects of different trade patterns on growth, previous literature provides some insights as to likely explanations. Vamvakidis (1999) found that participation in RTAs was on average associated with slower growth rates than following a policy of broad liberalization. Hoeller et al. (1998) also found that it is
openness in general, rather than regional trade integration that has favored growth in Europe. On the other hand, results in this study are not consistent with findings in Johansson (2001) who analyzes the effects of intra and extra regional imports on total factor productivity in France, Germany, Italy and the U.K. The author documented a positive relationship between total factor productivity and intra-EU imports but not for imports from other developed non-EU countries. One reason for this contradiction may be the addition of exports in the measurement of trade intensities in our study. Another reason may be the inclusion of 9 other EU members. An important similarity however, is that intra- and extra-regional trade patterns have different effects on growth.

A number of other factors could be responsible for the observed difference in trade effects on growth. These could include market size, different structural relationships between growth and trade patterns, or the composition of commodities in the respective trade patterns. For example, Alcalá and Ciccone (2003) found that the effect of trade on growth depended on country (market) size. With respect to the composition of commodities, conventional knowledge would suggest higher proportions of capital goods in extra-regional trade may be responsible for its greater effects. However, an examination of commodities in EU trade does not show any significant difference in the relative compositions of intra-regional and extra-regional trade that would alter their growth effects (see Figure 3). Therefore, it seems more likely that the difference in trade effects lies mainly in the market size and possibly the structural linkages between growth and trade patterns as extra-regional trade exposes countries to a much larger and diverse market than intra-regional trade.

VI. Concluding Remarks

A key economic objective of both multilateral and regional trade negotiations is to progressively eliminate barriers to trade in an effort to promote economic growth. Yet recent difficulties with furthering global trade talks have placed a renewed emphasis on regional integration. This study seeks to investigate whether intra-regional trade among EU member countries has been a stronger source for growth in output per capita relative to extra-regional trade. The analysis here represents a significant departure from most previous studies that have assessed growth effects of RTAs by use of dummy variables which do not capture dynamic effects and some that treat trade as having the same effect regardless of trade
partners involved. Specifically, our empirical framework uses intra-regional and extra-regional trade intensities to estimate the differential contribution of these two types of trade on growth in thirteen EU countries over the period 1980-2003.

The empirical results show that in the case of the 13 EU countries, intra-regional trade has had a lesser impact on output growth than extra-regional trade by almost 30 percent, holding all other factors constant. This is likely due to the fact that extra-regional trade exposes countries to a larger and more diverse global market, which implies more possibilities for transfer of skills and technology. The global market also implies larger economies of scale and greater competition leading to higher efficiency in production.

Yet, the contribution of intra- and extra-regional trade to growth is only one element in the set of arguments on the globalization versus regionalism debate. In particular, the formation of regional trade agreements is often a combination of both economic and political arguments. There may be perceived benefits from using regional economic integration as a basis for increasing regional security, promoting bargaining power, creating a “commitment mechanism” for domestic policy reform. In fact, a primary reason for the formation of the European Steel and Coal Community, which paved the way for the EU, was to enhance regional security. By interlocking key resources such as coal and steel, member countries made future conflict prohibitively expensive and regular political contact build trust and facilitated other forms of cross-border cooperation.

Given that the focus of this study is on the economic objectives of RTAs and on the EU’s experience in particular, the results should not be interpreted as evidence that the benefits of multilateral trade liberalization outweigh those of regional integration. Such evidence may be possible with time, as the accumulation of data on the performance of more recent RTAs (such as NAFTA), will allow for a richer picture to emerge regarding the differential impact of intra and extra-regional trade. With advancements in the liberalization of trade in services, it would also be possible in future research to investigate the differential impact of service and merchandise trade on growth. Rather, the results in this study may be viewed as a benchmark relative to which the experience of other regional trading blocks can be evaluated in the future.

Acknowledgments

We are grateful for helpful comments and suggestions from participants at the Midwest Economic Association Conference (2006) and the “Globalization and
Regional Economic Integration” conference, Gyeong Ju, South Korea (2006). An earlier version of this paper is a Master’s Thesis by Tepa M. Banda.

Received 5 February 2007, Accepted 14 October 2007

References

Frankel, Jeffrey, Stein, Ernesto and Wei, Shang-jin (1995), “Trading Blocs and the
The Contribution of Intra-Regional and Extra-Regional Trade to Growth: America’s The Natural, the Unnatural, and the Super-natural” *Journal of Development Economics*, 47: 61-95

